import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
n_nodes_hl1, n_nodes_hl2, n_nodes_hl3 = 500, 500, 500
n_classes = 10
batch_size = 100
x = tf.placeholder("float", [None, 784])
y = tf.placeholder("float")
def neural_network_model(data):
# height * width
hidden_1_layer = {"weights": tf.Variable(tf.random_normal([784, n_nodes_hl1])),
"biases": tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {"weights": tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
"biases": tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {"weights": tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
"biases": tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {"weights": tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
"biases": tf.Variable(tf.random_normal([n_classes]))}
# model = (input_data * weight) + biases
l1 = tf.add(tf.matmul(data, hidden_1_layer["weights"]), hidden_1_layer["biases"])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer["weights"]), hidden_2_layer["biases"])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer["weights"]), hidden_3_layer["biases"])
l3 = tf.nn.relu(l3)
op = tf.matmul(l3, output_layer["weights"]) + output_layer["biases"]
# op = tf.nn.sigmoid(op)
return op
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
x_epoch, y_epoch = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: x_epoch, y: y_epoch})
epoch_loss += c
print('Epoch', epoch, "completed out of", epochs, "loss:", epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, "float"))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)